General Steps for Completing the Square

Start

With and equation of the form:

\$ax^2 + bx + c = 0\$

Step 1

Put parentheses around the x terms:

\$(ax^2 + bx) + c = 0\$

Step 2

Factor out the a term:

\$a(x^2 + b/ax) + c = 0\$

Step 3

Inside the parentheses, add \$(1/2*b/a)^2\$:

\$a(x^2 + b/ax + (b/(2a))^2) + c = 0\$

Step 4

Outside the parentheses, subtract \$b^2/(4a)\$:

\$a(x^2 + b/ax + (b/(2a))^2) + c - b^2/(4a) = 0\$

This balances Step 3 by subtracting the same value as was added.

Step 5

Factor the quadratic term within the parentheses:

\$a(x + b/(2a))^2 + c - b^2/(4a) = 0\$

Example of Completing the Square

Start

\$6x^2 + 18x - 25 = 0\$

Step 1

\$(6x^2 + 18x) - 25 = 0\$

Step 2

\$6(x^2 + 18/6x) - 25 = 0\$

Step 3

\$6(x^2 + 3x + (18/(2*6))^2) - 25 = 0\$

Step 4

\$6(x^2 + 3x + (3/2)^2) - 25 - 18^2/(4*6)= 0\$

Step 5

\$6(x + 3/2)^2 - 25 - 324/24 = 0\$

Simplify

\$6(x + 3/2)^2 - 50/2 - 27/2 = 0\$

\$6(x + 3/2)^2 - 77/2 = 0\$